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Talk overview

• What is a genome?

• Sequencing: the way we observe the data.

• Population genomics: studying natural processes which
creates our data and inferring history from the genomes.

• Forwards in time models.
• Backwards in time models.
• Methods for population history inference.

• Medical and other applications: Genome Wide Association
Study (GWAS), cancer genomics and metagenomics.
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What is a genome?

• A DNA molecule is a sequence of four nucleotides: cytosine
(C), guanine (G), adenine (A) and thymine (T). Genomic
data is a text over a four-letter alphabet.

• A genome is the genetic material of an organism consisting of
DNA (or RNA for some viruses). It includes genes and
non-coding regions and packed and organised into
chromosomes, each of which is a long DNA molecule.

• Human genome is diploid : it contains two sets of
chromosomes, one coming from each parent. Genetic material
from one parent is called a haplotype.
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Some numbers

• Human genome length ≈ 3Gb (Giga-basepairs).

• There are ≈ 3 million differences between two typical human
haplotypes, e.g. maternal and paternal versions in one person.

• Most of these are shared with other people, caused by
mutations in the distant past, 10s or 100s of thousands of
years ago.

• Each one of us receives approximately 80 new mutations in
our genome from our parents, 10−8 per bp per generation
(though this estimate varies a lot!).

• Almost 114 millions of Single Nucleotide Polymorphisms
(SNP) are validated according to dbSNP (October 2017).
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Sequencing costs

Sequencing price reduced dramatically which allow to create huge
genomic data bases.

Erika Check Hayden, Technology: The $1,000 genome. Nature, 2014



Data Genealogy and coalescent Inference of population history Health and other applications

1000 Genome projects
1000 Genome Project is one of the biggest genomic data sets.
Currently (phase 3) it contains 2504 human individuals with 88
millions variant sites.
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What shapes the data?

Observed data

Genealogical
processes: DNA

duplication,
mutations, re-

combinations etc.

Sequencing and
genotyping: differ-

ent technologies
to “read” DNA.
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Sequencing

Sequencing technologies also influence on the data. Sequencing
produce a pool of reads - short strands of DNA, current standard
is 70-150 base pairs long, but we can get up to 10,000bp. Each
position can be covered by several reads (this number is random).

• De-novo assembly.

• Read alignment against reference genome.

• Variant calling: are there enough reads that support the
variant?

• Phasing: if SNP1 carries variants G and A and SNP2 with C
and T, there are two possible genomes which can underly the
data:

. . . G. . . A . . . . . . G . . . T . . .

. . . C. . . T . . . . . . C . . . A . . .

• Imputation: the way to treat missing data.
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Genealogical processes: from molecular level ...

• All the life reproduction is based on cell division. Genetic
material is duplicated during this process.

• Errors can occur during duplication. It can be a single
nucleotide polymorphism (SNP), insertions, deletions and
some other.

• Human gametes (reproduction cells) contain only one set of
chromosomes which is a mosaic of parental two sets of
chromosomes, which is created by recombinations.

Problem: Estimate mutation and recombination rates.
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Genealogical processes: ... to population study

Problem: what is the relation between
population history and genomes?

• The most evident population models work forward in time
introducing birth (together with the choice of parent) and
death of individuals.

• Wright-Fisher model and Moran model are the classical
examples.

• The important parameter which affects the shape of
genealogy is the effective population size: the number of
breeding individuals in an idealised population.

• These models have more theoretical than computational
interest.
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Relationship between forwards in time (Wright-Fisher) and
backwards in time (Coalescent) models

• In the absence of recombinations, a genealogy of genome
samples is a tree. The internal nodes of the tree corresponds
to the most recent common ancestors of two lineages.

• Coalescent approach models genealogies backward in time,
which is computationally efficient.
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Coalescent model

Problem: inferring population history and structure
from genomes (modern and ancient).

• Coalescent model is a limiting distribution which is consistent
with forwards in time models for large effective population
size.

• Lineages coalesce according to a Poisson process with
parameter proportional to the scaled effective population size.

• If effective population size is constant, the distribution of
counts of allele frequencies j is 1/j .

• The deviations from this law can be used to detect variation
in effective population size and different population histories
(isolation, migration, bottlenecks etc.). Tajima’s D statistic is
the classical measure reflecting this property.
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Coalescent model

Here are two examples of decreasing and increasing effective
population size. In the first scenario the number of singletons is
relatively small, though in the second singletons will be
overrepresented.
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Population structure of recent generations

• Coalescent model works fine for large time scales because it is
a limiting distribution.

• It does not work for very recent past.

• For example, characterising the number of siblings or cousins
in a sample requires working with Wright-Fisher model
[Shchur, Nielsen, under reviewing].

• For a random mating population with effective population size
2N, in a sample of size K , the number of individuals without
siblings of cousins (in the same sample) is approximately

e−(22p−1)K/N .

With a fast growth of data sets, it is important to correct our
studies (e.g. GWAS) for relatives.



Data Genealogy and coalescent Inference of population history Health and other applications

Example from criminalistics

• On April 24, 2018, the Sacramento County Sheriff’s
Department arrested J. DeAngelo (72 y.o.) known as the
Golden State Killer who committed more than 150 crimes
from 1974 through 1986.

• Law enforcement uploaded the Golden State Killer’s DNA
profile to personal genomics website GEDmatch.

• The website identified a dozen of distant relatives of the
Golden State Killer. The investigators then traced the family
tree to the main suspect.

• Our manuscript was used in a blogpost by Prof. Graham Coop
(UC Davis) to analyse how lucky the genetic investigation was.
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Adding recombinations

• If points on the genome are very close, e.g. adjacent, they
share the same tree.

• If points are very far, their trees are sampled from the
coalescent independently.

Problem: What happens in between?

A recombination in the ancestor of a modern sequence made it out
of two separate sequences, one contributing to the left and one to
the right.
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Pairwise Sequentially Markovian Approximation to the
Coalescent (PSMC)

• For two haplotypes, the tree is very simple. Recombinations
change its height.

• Local trees are states of a Hidden Markov Model (H. Li,
R. Durbin)

• Recombinations are transitions.

• Mutations are emissions.



Data Genealogy and coalescent Inference of population history Health and other applications

Pairwise Sequentially Markovian Approximation to the
Coalescent (PSMC)

• For two haplotypes, the tree is very simple. Recombinations
change its height.

• Local trees are states of a Hidden Markov Model (H. Li,
R. Durbin)

• Recombinations are transitions.

• Mutations are emissions.



Data Genealogy and coalescent Inference of population history Health and other applications

PSMC on simulated data

PSMC reconstructs individual history. It fits effective population
size and few other parameters.
Two haplotypes were simulated.
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PSMC for low quality data

• To call SNPs confidently, we need expensive high-coverage
sequencing.

• Genotype likelihoods allow to work with low quality data,
incorporate uncertainty for many different types of errors.

• We are developing a new version of PSMC with emissions
based on genotype likelihoods (with Thorfinn Sand, University
of Copenhagen).

• We are also developing a method to infer migration rates and
split time from PSMC on two different genomes by fitting
allele frequency spectrum.
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Genome Wide Association Study (GWAS)

• Study design: typically it is a comparison of a control group
against a case group.

• Mendelian traits are relatively easy to discover (e.g. lactase
persistance).

• Some traits (e.g. height or schizophrenia) can be caused by
both genetic and environmental factors.

• Epistasis: non-linear interaction between alleles in the same or
different genes and even non-coding regions.

• Joe Pickrell’s idea (gencove.com): sequence at very low
quality, but huge amount of individuals.
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Cancer genomics

• Cancer genomics is our main hope to treat cancer efficiently.

• This vast field includes population genomics (study of tumour
evolution) and GWAS (identification of driver mutations).

• This knowledge can help in diagnostics (blood test for specific
genetic markers), treatment planning (tumours with different
mutations have different response to treatments).

• One of the most promising treatments is the viral therapy.
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Metagenomics

• Metagenomics studies genomic material from environmental
samples: gut microbes, soils etc.

• Machine learning can be used to identify new species of
viruses.

• Gives valuable insight in the organisation of different biomes,
can detect presence of different species.

• Other applications: medicine, agriculture, recycling.
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Summary

• Genomics is a multidisciplinary science which includes biology,
mathematics, statistics and computer science.

• It is one of the most dynamic fields of knowledge, and in the
21 century it might have an impact as strong as physics,
chemistry, and computational technology had in the previous
century.
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Perspectives in Russia

• Russia is a multinational country with a unique history and
uneven population. Genetic profile of the country would be of
high interest from cultural, economical and health aspects.

• Russia is a source of highly valuable archeological discoveries
(Denisova man at Altai, mammoths in North-East Siberia).
Study of ancient genomes allows to solve many mysteries.
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