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Normal diffusion
A. Einstein (1905)

D – diffusion coefficient

2
(t) 6R Dt=



Anomalous diffusion

1 𝑅2(t) ∼ 𝑡𝛼

Superdiffusion

Subdiffusion

Normal diffusion



Anomalous diffusion in biology

➢ Flight of albatroses.

➢ Movement of spider monkeys.

➢ Molecular motors: active motion of motor proteins 

with cargo along the filaments in the cytoskeleton.

Superdiffusion

Advantages of superdiffusion in biology

➢ Superdiffusion leads to the effective search 

strategy for finding randomly located objects.



Anomalous diffusion in biology

➢ Diffusion of channel proteins in cell membranes.

➢ Diffusion of telomers (chromosomal end parts) in 

human cell nuclei.

➢ Motion of messenger RNA in bacteria cells.

➢ Anomalous diffusion of large molecules due to 

high density of the cell environment.

Subdiffusion



Some sources of anomaly

Geometrical constraints

➢ Diffusion in crowded systems

➢ Diffusion on fractal structures 

Diffusion in inhomogeneous environment

➢ Heterogeneous diffusion process (motion with 

space-dependent diffusion coefficient)

Diffusion in non-stationary environment

➢ Scaled Brownian motion (motion with 

time-dependent diffusion coefficient)



Ergodicity breaking
Ensemble averaged mean-squared displacement 

(MSD) is not equal to the ensemble-averaged MSD.



Time-averaged mean-squared 

displacement (MSD)

Δ – lag time t – trajectory length

t

Single particle tracking experiments



Time-dependent 

diffusion coefficient D(t)

I. Brownian motion in a bath with 

time-dependent temperature

II. Snow melt dynamics

III. Diffusion in turbulence

IV. Water diffusion in brain tissue

V. Free cooling granular gases



Powders

Granular systems

Sand

Stones
Nuts



Granular solids

Sand

Stones

For small loads granular systems behave like solids: 

resist the load and preserve their form

http://images.google.co.uk/imgres?imgurl=http://www.travelblog.org/Wallpaper/pix/tb_mui_ne_sand_dunes.jpg&imgrefurl=http://www.travelblog.org/Wallpaper/sand_dunes_mui_ne.html&h=864&w=1152&sz=125&hl=en&start=1&um=1&tbnid=exqytVRZqYc1cM:&tbnh=112&tbnw=150&prev=/images?q=Dunes+&um=1&hl=en&sa=N


Granular liquids

For lager loads they 

flow like liquids and 

preserve their volume 



Granular gases

For larger loads they 

form rapid granular flows, 

where they behave like gases 

http://listverse.com/wp-content/uploads/2007/10/avalanche.jpg


Granular gas – rarefied system of macroscopic 

particles, which collide with loss of energy



Granular gas: space

Planetary rings

Protoplanetary disc

Interstellar dust



Free granular gas

If no external forces act on the 

granular system, it evolves freely

and the particles slow down.

D

t



Magnetic levitation

Georg Maret, University of Konstanz, Germany



The Bremen Drop-tower
146 m

9.3 s of weightlessness



Low gravity environment

Parabolic flights
(30 parabolas, 

20 s of reduced gravity)

Eric Falcon, Univ Paris Diderot, 

Sorbonne Paris Cité, Paris, France

Rocket experiments (12 min of microgravity)
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Restitution coefficient ɛ
Dependence of ɛ on the relative velocity V12:

( ) 1/5 2/5

12 1 12 2 12
1ε V CV C V= − +

1ε →

12 0V →For small collisional relative velocities

collisions become more elastic:

Coefficients C1, C2 depend on Young's modulus,

Poisson ratio, viscosity, density and sizes of 

colliding particles



Event-driven simulations

of granular gases
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Granular temperature

The mean kinetic energy (granular temperature) in

a granular gas decreases due to inelastic collisions

according to the Haff’s law:
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Diffusion coefficient of granular 

particles is time-dependent:

Diffusion coefficient

- velocity correlation time



Diffusion coefficient

of rough granular partcles

Smooth particles

Rough particles

Moment of inertia Tangential restitution 

coefficient

Tangential velocity



Diffusion coefficient of granular gases

Constant 

restitution coefficient

Velocity-dependent

restitution coefficient

Granular temperature 

(mean kinetic energy of granular particles)

Diffusion coefficient

N. V. Brilliantov and T. Poeschel, Phys. Rev. E 61, 1716 (2000)
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Overdamped Langevin equation
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Diffusion coefficient

White Gaussian noise

Scaled Brownian 

motion (SBM)
Ultraslow SBM
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Underdamped Langevin equation with

time-dependent temperature

Mean-squared displacement

Friction coefficient Temperature Diffusion coefficient

For large times                  SBM result

For small times                  ballistic behavior



Time-averaged MSD

Underdamped Overdamped

For large lag times

the underdamped and overdamped limits become comparable:

For intermediate lag times



MSD and time-averaged MSD

1/ 2 =

Underdamped SBM 
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Time-averaged MSD: overdamped

and underdamped limits
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Underdamped Langevin equation:

ultraslow limit

Mean-squared displacement

Time-averaged mean-squared displacement

Friction coefficient Temperature Diffusion coefficient

for



Ultraslow underdamped SBM 

MSD and time-averaged MSD



Time-averaged MSD: 

overdamped and underdamped limits

Underdamped

Overdamped

Ultraslow underdamped SBM 



Granular gas with constant

restitution coefficient

Mean-squared 

displacement (MSD):

( )12ε v const=

𝑅2(𝑡) ∼ log 𝑡

Time-averaged MSD:
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( ) 1/5 2/5

12 1 12 2 12
1ε v C v C v= − +

Mean-squared 

displacement (MSD):

𝑅2(𝑡) ∼ 𝑡1/6

Time-averaged MSD:

Granular gas with velocity-dependent

restitution coefficient

Crossover from

𝛿2(Δ) ∼ Δ7/6/𝑡
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Resettnig

If one searches for a goal and is lost, sometimes it is 

useful to return to starting point and to start

the search from the beginning.



Resetting

• Foraging animals

• Optimizing 

search algorithms



Typical trajectories for scaled 

Brownian motion with resetting
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Renewal process

Non-renewal process



Diffusion coefficient

White Gaussian noise

Scaled Brownian motion

Mean-squared displacement

Probability distribution function

Superdiffusion Subdiffusion

Ordinary Brownian motion



Distribution of waiting times between the 

resetting events
Exponential (Poissonian) 

resetting

Survival probability

Power-law resetting

The probability that an event occurs at time t

constant rate



Probability distribution function

Mean-squared displacement

The probability to find the particle at location x at time t:

No resetting Last resetting at time t’

Renewal process: diffusion coefficient also resets to initial value D0

Non- renewal process: diffusion coefficient is not affected by the

resetting events



Mean-squared displacement
Exponential resetting

Renewal process:

Non-renewal process:

Steady state:



Probability distribution function
Exponential resetting: non-renewal process



Probability distribution function
Exponential resetting: renewal process

Steady state



First passage time

Exponential resetting: renewal process
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Mean-squared displacement

Power-law resetting

non-renewal process



Mean-squared displacement
Power-law resetting 

non-renewal process
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Mean-squared displacement
Power-law resetting: renewal process



Mean-squared displacement
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First passage time
Power-law resetting: renewal process
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Conclusions
➢ The underdamped scaled Brownian motion, a novel anomalous 

diffusion process governed by Langevin equation with time-

dependent diffusion and friction coefficients, describes the diffusion 

in bath with time-dependent temperature and in granular gases.

➢ The overdamped limit of the Langevin equation does not capture 

all properties of the system

➢ Resetting significantly affects the behavior of Brownian motion with 

time-dependent diffusion coefficient
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