Критический взгляд на критическое поведение поверхности в O(N) модели в d = 3

Макс Метлицкий MIT

arXiv: 2009.05119

Суперкомпьютерное моделирование в науке и инженерии, или Вычислительные среды, ВШЭ, 19 мая, 2021.

Boundary criticality

$$\langle \hat{O}(x)\hat{O}(y)\rangle \sim \frac{1}{|x-y|^{2\hat{\Delta}}}$$

SPT (gapped)

Grover, Vishwanath, 1206.1332 ...

• BCFT - not unique

Classical O(N) model

"Normal" transition

$$H = -\sum_{\langle ij\rangle} K_{ij} \vec{S}_i \cdot \vec{S}_j, \qquad d = 3$$

d = 3, N > 2

d = 3, N > 2

$$d = 3, N \to \infty$$

- No special fixed point at $N=\infty$ in d=3

•
$$d = 3 + \epsilon$$

$$(\Delta_{\vec{n}})_{spec} = \epsilon \left(1 + \frac{3}{N}\right) + O\left(\frac{1}{N^2}\right)$$

Ohno, Okabe 1983

d = 3, N > 2

RG sketch (d = 3)

• No bulk: $S = \frac{1}{2g} \int d^2 \mathbf{x} \ (\partial_\mu \vec{n})^2, \qquad \vec{n}^2 = 1$

Polyakov:
$$\frac{dg}{d\ell} = \frac{N-2}{2\pi}g^2$$
, $\vec{n} \to \left(1 - \frac{\eta_n(g)}{2}d\ell\right)\vec{n}$, $\eta_n = \frac{N-1}{2\pi}g$

• Coupling to bulk:
$$\frac{dg}{d\ell} = -\alpha g^2 \,, \qquad \qquad \alpha = \frac{\pi s^2}{2} - \frac{N-2}{2\pi}$$

 $\alpha > 0, \qquad g \to 0$

 $\langle \vec{n}(x) \cdot \vec{n}(0) \rangle \sim \frac{1}{(\log x)^q}$ $q = \frac{N-1}{2\pi\alpha}$

- Extra-ordinary-log fixed point

RG sketch (d = 3)

• No bulk: $S = \frac{1}{2g} \int d^2 \mathbf{x} \; (\partial_\mu \vec{n})^2, \qquad \vec{n}^2 = 1$

Polyakov:
$$\frac{dg}{d\ell} = \frac{N-2}{2\pi}g^2, \quad \vec{n} \to \left(1 - \frac{\eta_n(g)}{2}d\ell\right)\vec{n}, \quad \eta_n = \frac{N-1}{2\pi}g$$

• Coupling to bulk: $\frac{dg}{d\ell} = -\alpha g^2 \,, \qquad \qquad \alpha = \frac{\pi s^2}{2} - \frac{N-2}{2\pi}$

 $\alpha>0,\qquad g\to 0\quad$ - Extra-ordinary-log fixed point

$$lpha < 0, \qquad g = 0$$
 - unstable

$$rac{dg}{d\ell} = -lpha g^2$$
 ,

$$\alpha = \frac{\pi s^2}{2} - \frac{N-2}{2\pi}$$

$$\alpha(N=2) = \frac{\pi s^2}{2} > 0$$
$$\alpha(N \to \infty) \approx -\frac{N-4}{4\pi} < 0$$

Extra-ordinary-log phase - stable

• Large-N: $N_c \approx 4$

Near N_c

Near N_c

d = 3, N > 2

Numerics: N = 3

Classical Monte-Carlo

Deng, Blote, Nightingale, 2005

N = 3

N = 4

Deng, Blote, Nightingale, 2005

Deng, 2006

Classical model: N = 3

Classical model: N = 3 – extra-ordinary log phase?

Classical phase diagram

Classical model: N = 2 – extra-ordinary log phase?

M. Hu, Y. Deng and J.-P. Lv, 2020

Classical phase diagram

$$N \to N_c$$

Scenario I:
$$b > 0$$

$$N \to N_c^-, \quad g_*^{sp} = \frac{a(N_c - N)}{b}$$

$$(\Delta_{\vec{n}})_{spec} \approx \frac{N-1}{4\pi} g_*^{sp}$$

$$\nu_{spec}^{-1} \approx \frac{a^2 (N_c - N)^2}{b}$$

Special transition (classical MC)

N	ν^{-1}	$\Delta_{\vec{n}}$
1	0.72	0.36
2	0.61	0.33
3	0.36	0.26
4	0.1	0.14

$$N \to N_c^-, \quad g_*^{sp} = \frac{a(N_c - N)}{b}$$

$$(\Delta_{\vec{n}})_{spec} \approx \frac{N-1}{4\pi} g_*^{sp}$$

$$\nu_{spec}^{-1} \approx \frac{a^2 (N_c - N)^2}{b}$$

Deng, Blote, Nightingale, 2005 Deng, 2006 Toldin, 2020

2+1D quantum spin models, N = 3

 $H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$

M. Matsumoto, C. Yasude, S. Todo et al, 2001

 J_D/J

L. Zhang and F. Wang, 2017
C. Ding, L. Zhang and W. Guo, 2018
L. Weber, F. Parisen Toldin, S. Wessel, 2018
L. Weber and S. Wessel, 2019, 2020
W. Zhu, C. Ding, L. Zhang and W. Guo, 2020

2+1D quantum spin models, N = 3

Non-dangling edge: $\Delta_{\vec{n}} \approx 1.15$ (Ordinary)

Dangling edge: $\Delta_{\vec{n}} \approx 0.25$

S = 1/2: weak SPT

Non-dangling edge: $\Delta_{\vec{n}} \approx 1.15$ (Ordinary)

Dangling edge: $\Delta_{\vec{n}} \approx 0.25$

d = 3, N > 2

S = 1/2: weak SPT

Non-dangling edge: $\Delta_{\vec{n}} \approx 1.15$ (Ordinary)

Dangling edge: $\Delta_{\vec{n}} \approx 0.25$

Similar exponents for S = ½ and S = 1! L. Weber and S. Wessel, 2019

Quantum models

C. Ding, L. Zhang and W. Guo, 2018 C.-M. Jian, Y. Xu, X.-C. Wu, C. Xu, 2020

$S = \frac{1}{2} vs S = 1?$

$$S = \frac{1}{2g} \int d^2 \mathbf{x} \; (\partial_\mu \vec{n})^2 + \frac{i\theta}{4\pi} \int d^2 \mathbf{x} \, \vec{n} \cdot (\partial_x \vec{n} \times \partial_\tau \vec{n}), \qquad \theta = 2\pi S$$

Haldane, 1983

 $S_{skyrm} = \frac{4\pi |m|}{g}$

• Supression: $e^{-\frac{4\pi}{g_*}} \approx e^{-\frac{2}{\Delta_n}} \approx e^{-8}$

VBS

$$\vec{S}_i \cdot \vec{S}_{i+1} \sim (-1)^i V(x)$$
$$S = \frac{1}{2g} \int d^2 x \; (\partial_\mu \vec{n})^2 + \frac{i\theta}{4\pi} \int d^2 x \, \vec{n} \cdot (\partial_x \vec{n} \times \partial_\tau \vec{n})$$

$$V(x) \sim \vec{n} \cdot (\partial_x \vec{n} \times \partial_\tau \vec{n})$$

$$\Delta_V \approx 2$$

• Numerics: S = 1/2: $\Delta_V < 2$ $(\Delta_V \approx 1.4)$

S = 1: $\Delta_V \approx 2$

L. Weber and S. Wessel (2020)

Conclusion

- Monte-Carlo (classical/quantum)
- Conformal bootstrap

• Special transition with N = 2

RG details

$$S_n = \frac{1}{2g} \int d^2 \mathbf{x} \; (\partial_\mu \vec{n})^2$$

$$S = S_{ord}[\vec{\phi}] + S_n - \tilde{s} \int d^2 \mathbf{x} \ \vec{n} \cdot \vec{\phi}(\vec{\mathbf{x}}, z = 0)$$

 $\vec{n} = (\vec{\pi}, \sqrt{1 - \vec{\pi}^2})$

• g=0, $\vec{n}=(\vec{0},1)$ - flows to normal universality class

Normal universality class

$$\phi_N(\vec{\mathbf{x}}, z) \sim \frac{A_\sigma}{z^{\Delta_\phi}} + \mu_\sigma z^{3-\Delta_\phi} \hat{\sigma}(\vec{\mathbf{x}}) + \dots, \quad z \to 0$$

$$\phi_i(\vec{\mathbf{x}}, z) \sim \mu_\phi z^{2-\Delta_\phi} \hat{\phi}_i(\vec{\mathbf{x}}) + \dots, \quad z \to 0, \qquad i = 1 \dots N - 1$$

$$\langle O^a(x) O^b(y) \rangle = \frac{\delta^{ab}}{1-\delta^{ab}} \qquad \langle \hat{O}^a(x) \hat{O}^b(y) \rangle = \frac{\delta^{ab}}{1-\delta^{ab}}$$

 \boldsymbol{z}

$$\langle O^a(x)O^b(y)\rangle = \frac{\delta^{ab}}{|x-y|^{2\Delta_O}}, \qquad \langle \hat{O}^a(\mathbf{x})\hat{O}^b(\mathbf{y})\rangle = \frac{\delta^{ab}}{|\mathbf{x}-\mathbf{y}|^{2\Delta_{\hat{O}}}},$$

 $\Delta_{\hat{\phi}_i} = 2 \qquad \qquad \Delta_{\hat{\sigma}} = 3$

Bray and Moore, 1977; Burkhardt and Cardy, 1987.

From ordinary to normal

$$S = S_{ord}[\vec{\phi}] + S_n - \tilde{s} \int d^2 \mathbf{x} \ \vec{n} \cdot \vec{\phi}(\vec{\mathbf{x}}, z = 0)$$

$$\rightarrow S_{norm}[\vec{\phi}] + S_n - s \int d^2 \mathbf{x} \ \pi_i \hat{\phi}_i$$

$$\vec{n} = (\vec{\pi}, \sqrt{1 - \vec{\pi}^2})$$
$$\vec{\phi}$$

$$\phi_i(\vec{\mathbf{x}}, z) \sim \mu_\phi z^{2-\Delta_\phi} \hat{\phi}_i(\vec{\mathbf{x}}) + \dots, \quad z \to 0, \qquad i = 1 \dots N - 1$$
 (normal)

$$\phi_N(\vec{\mathbf{x}}, z) \sim \frac{A_\sigma}{z^{\Delta_\phi}} + \mu_\sigma z^{3-\Delta_\phi} \hat{\sigma}(\vec{\mathbf{x}}) + \dots, \quad z \to 0$$

$$\delta L \sim \hat{\sigma} \sqrt{1 - \vec{\pi}^2}$$
 - irrelevant, $\Delta_{\hat{\sigma}} = 3$

$$s = \frac{1}{\pi} \frac{A_{\sigma}}{\mu_{\phi}}$$

Restoring O(N) symmetry

$$S = S_{norm}[\vec{\phi}] + S_n - s \int d^2 \mathbf{x} \ \pi_i \hat{\phi}_i$$

$$\vec{\pi} = 0, \qquad \langle \phi_N(z) \rangle = \frac{A_\sigma}{z^{\Delta_\phi}}, \quad \langle \phi_i \rangle = 0$$

$$\vec{n} = (\vec{\pi}, \sqrt{1 - \vec{\pi}^2})$$
$$\vec{\phi}$$

$$\vec{\pi} \neq 0, \qquad \langle \phi_i(z) \rangle \approx \frac{A_\sigma}{z^{\Delta_\phi}} \pi_i$$

$$\langle \phi_i(z) \rangle \approx s \, \pi_j \int d^2 \mathbf{x} \, \langle \phi_i(z) \hat{\phi}_j(\mathbf{x}) \rangle_{norm}$$

$$\langle \phi_i(\mathbf{x}, z) \hat{\phi}_j(\mathbf{x}') \rangle_{norm} = \mu_{\phi} \delta_{ij} \frac{z^{2-\Delta_{\phi}}}{(|\mathbf{x} - \mathbf{x}'|^2 + z^2)^2}$$

$$s = \frac{1}{\pi} \frac{A_{\sigma}}{\mu_{\phi}}$$

Amplitudes

$$A_{\sigma}^{2} \approx N + 0.678 + O(N^{-1})$$
$$\mu_{\phi}^{2} \approx 2\left(1 + \frac{0.678}{N}\right) + O(N^{-2})$$
$$s^{2} = \frac{N}{2\pi^{2}} + O(N^{-1})$$

MM + Ohno, Okabe, 1983

• $4 - \epsilon$: P. Dey, T. Hansen, M. Shpot, 2020.

RG

$$S = S_{norm}[\vec{\phi}] + S_n - s \int d^2 \mathbf{x} \ \pi_i \hat{\phi}_i$$

$$s = \frac{1}{\pi} \frac{A_{\sigma}}{\mu_{\phi}}$$

$$S_n = \frac{1}{2g} \int d^2 x \left((\partial_\mu \vec{\pi})^2 + \frac{1}{1 - \vec{\pi}^2} (\vec{\pi} \cdot \partial_\mu \vec{\pi})^2 \right)$$

$$\frac{\pi \quad \hat{\phi} \quad \pi}{|\mathbf{x} - \mathbf{x}'|^4} \quad \langle \hat{\phi}_i(\mathbf{x}) \hat{\phi}_j(\mathbf{x}') \rangle = \frac{\delta_{ij}}{|\mathbf{x} - \mathbf{x}'|^4}$$

$$\frac{dg}{d\ell} = -\alpha g^2 \qquad \qquad \alpha = \frac{\pi s^2}{2} - \frac{N-2}{2\pi} \qquad \qquad \eta_n = \frac{N-1}{2\pi}g$$

Check: $d = 3 + \epsilon$

Agrees with Ohno, Okabe 1983

Conclusion

- Monte-Carlo (classical/quantum)
- Bootstrap $s=rac{1}{\pi}rac{A_{\sigma}}{\mu_{\phi}}$

• Special transition with N = 2

Thank you!