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Numerics: N = 3
• Classical Monte-Carlo
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FIG. 10: Surface ratio Q11 in the range 0.65 ≤ κ ≤ 1.1 for the O(3) model. The data points +,

×, !, ©, $, ♦, and ∗ represent system sizes L = 8, 16, 24, 32, 40, 48, and 64, respectively. The

apparent convergence of the intersections of the Q11 data with increasing system size indicates a

“special” surface transition near κ = 0.80, in agreement with the results in Figs. 8 and 9.

point, our numerical data did not yield evidence for corrections to scaling due to a marginal

field at the special transition.

Finally, we note that the surface-critical behavior of the O(1), O(2) and O(3) models is

rather dissimilar for large surface enhancements. For the O(1) model, spontaneous surface

order exists even below the bulk critical coupling Kc; for the O(2) model it exists for K > Kc

and possibly for K = Kc; and for the O(3) model only for K > Kc. In line with the bulk

critical singularity, the O(n) surface critical behavior is thus seen to become less singular

with increasing n. This is also evident from our analyses of the special transitions, which

yield relevant exponents y(s)t1 for the O(1) and O(2) models but allow a marginal exponent

for the O(3) model. Since the lower critical dimensionality of the special transition1 is 3

for n > 2, it seems plausible that the range κ > κc corresponds with a line of fixed points

and κ-dependent critical surface exponents, in agreement with an analysis of the surface

magnetization by Krech9. Indeed, the data in Figs. 8 and 9 are suggestive of a Kosterlitz-

Thouless-like scenario involving a nonuniversal range of Q-values such as found earlier in

the different context of the Ising triangular antiferromagnet48.

Q11 =
h~m1 · ~m1i2

h(~m1 · ~m1)2i

Special transition?
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M. Krech, 2000

mtot ≡
L
∑

z=1

m(z)/L,

respectively, and mtot ≡ |mtot| denotes the modulus of
the total magnetization. The magnetization profile m(z)
is then defined as the projection of m(z) onto the total
magnetization mtot, i.e.,

m(z) ≡ m(z) ·mtot/mtot (3.2)

and m1 ≡ (m(1) + m(L))/2 defines the surface magne-
tization. Note that the surfaces at z = 1 and z = L
are identical (see Eq.(2.1)). In terms of mtot and m1 the
layer and surface susceptibilities (i.e., their longitudinal
components) χ1 and χ11 for a completely finite system
are defined as

χ1 = L2(〈mtotm1〉 − 〈mtot〉〈m1〉)/(kBT ) (3.3)

χ11 = L2(〈m2
1〉 − 〈m1〉

2)/(kBT ),

where 〈. . .〉 denotes the thermal average. The energy
profile e(z) is defined accordingly, where apart from the
exchange energy between the spins within layer z half
the interaction energy to the layers z − 1 and z + 1 also
contributes to e(z), so etot ≡

∑L
z=1 e(z)/L is the total en-

ergy density. In the following all energies will be given in
units of kBTc, i.e., extra factors kBT (see, e.g, Eq.(3.3))
are unity at T = Tc.
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FIG. 1. Surface magnetization m1(L) (see Eq.(3.2)) at
T = Tc as function of the system size L for J1/J = 0.3 (×,
solid line), 0.5 (+, short dashed line), 1.0 (∗, dashed line), 1.5
(!, long dashed line), and 2.0 ( , dash-dotted line). Statis-
tical errors are much smaller than the symbol sizes and the
various lines are just guides to the eye. For J1/J ≤ 1 m1 dis-
plays the expected behavior for the ordinary surface univer-
sality class. For J1/J = 1.5 the system undergoes a crossover
towards ordinary surface behavior, whereas for J1/J = 2.0
the behavior of m1 is inherently nonasymptotic within the
available range of system sizes.

The surface magnetization m1 at T = Tc as function
of the system size L is shown in Fig.1 for J1/J = 0.3,

0.5, 1.0, 1.5, and 2.0. For J1/J ≤ 1 the functional form
of m1(L) ≡ 〈m1〉 is accurately captured by

m1(L) = Bm1
L−β1/ν

(

1 + Cm1
L−ω

)

, (3.4)

where Bm1
is the magnetization amplitude and Cm1

is the amplitude of the leading correction to scaling.
The associated Wegner exponent ω = 0.78 is taken
from Ref.41. A least square fit of Eq.(3.4) to the data
for J1/J ≤ 1 displayed in Fig.1 yields the estimates
β1/ν = 1.185(6), 1.175(13), and 1.171(7) for J1/J =
0.3, 0.5, and 1.0, respectively. The error indicated
in parenthesis corresponds to one standard deviation.
From these estimates one obtaines the weighted average
β1/ν = 1.179(6), where the smallest of the individual
errors is taken as the final error estimate. Two of the
three individual estimates are included in the error in-
terval of the final estimate. From the literature value
ν = 0.7073(35)41 one obtains the estimate

β1 = 0.834(6) (3.5)

for the surface exponent of the magnetization. For
J1/J = 1.5 Eq.(3.4) does not capture the functional
form of m1(L), because within the available range of lat-
tice sizes the system undergoes a crossover towards the
asymptotic ordinary surface critical behavior. A more
detailed discussion of this crossover is postponed to Sec.
5, where the order parameter and energy density profiles
are presented. If the decay of m1(L) for J1/J = 1.5 is
described by an effective exponent according to Eq.(3.4),
one finds a value around 0.6 for L ≤ 20 and a value
around 0.9 for L ≥ 48. This indicates that only a part of
the full crossover process is captured by the simulation.
This leads to the conclusion that the data for J1/J = 2.0
have not yet even entered the crossover regime to ordi-
nary surface critical behavior. It is insructive to compare
these data with corresponding data for the Ising model.
The surface - to - bulk coupling ratio J1/J = 2.0 already
belongs to the extraordinary regime of the Ising model7,
where the surface exhibits long - range order at T = Tc.
The comparison is shown in Fig.2, where the data for
an Ising model according to Eq.(2.1) have been obtained
from a hybrid algortihm which corresponds to the one
described above, except that overrelaxation moves can-
not be performed in this case42. The surface magne-
tization decays with an effective exponent of about 0.16
(see Fig.2(a), solid line), whereas for the Ising model (see
Fig.2(b), solid line) m1(L) approaches the spontaneous
surface magnetization m10 according to

m1(L) = m10 −BI
m1

L−β/ν (3.6)

up to corrections to scaling, where β/ν ' 0.51741 is the
scaling dimension of the order parameter in the Ising
universality class and BI

m1
is a nonuniversal amplitude.

Fig.2 illustrates how the presence of real long - range
surface order (b) can be distinguished from spurious
long - range surface order (a) which only appears as

5
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Table IV gives a summary of some recent results for the
bulk critical point and critical exponents of the O!4" model.
Our estimate of the critical point agrees well with those in
Refs. #6,15,26$, while the precision is significantly improved.
Our results for the renormalization exponents yt and yh are
most consistent with those in Ref. #7$, in which Monte Carlo
simulations were carried out for the O!4"-symmetric !4

model.

III. SURFACE PHASE TRANSITIONS

To investigate surface effects on the three-dimensional
O!4" model, we simulate the O!4" model on the L"L"L
simple-cubic lattice with two open surfaces in the z direction.
The nearest-neighbor coupling strength K1 on the surfaces
can take different values from K in the bulk. Wolff cluster
simulations were performed at the estimated critical point
Kc=0.935 856!2" for several values of K1. In the remainder
of the present paper, we denote the enhancement of surface
couplings by parameter #=K1 /K−1.

A. Ordinary surface transitions

For the Ising, XY, and Heisenberg models on the simple-
cubic lattice, the special surface phase transitions occur
#17,28–30$ at #c!N=1"=0.502 14!8", #c!N=2"=0.622 2!3",

and #c!N=3"=0.85. Thus, if the special transition also exists
for the O!4" model, one would expect it to occur at #c
$0.8; this will be confirmed later. For #%#c, the surface
phase transitions, i.e., the ordinary transitions, are in the
same universality class. Further, the existing numerical data
for the O!N" model with N&3 imply that the “fixed” point
for the ordinary surface transition occurs at #%0; at this
point, the amplitude for the leading finite-size corrections
vanishes.

In the present work, we simulated at the ordinary surface
transition of the O!4" model with #=−1; namely, the surface
coupling strength K1 was set at zero. The system size took
14 values in range 4&L&64. For each system size, about
4"107 samples were generated. We sampled the magnetiza-
tion density m! 1 on the surfaces and the associated moments,
as

!m! 1"k =
1
2%& 1

Ld '
i:z=1

s!i(k

+ & 1
Ld '

i:z=L
s!i(k) , !15"

where k=2 and 4. On this basis, we define the surface Binder
ratio as

FIG. 6. Quantity '1 /L2 at the ordinary surface transition with

#=−1 vs L−1.9596=L2yh1
!o"

−4. The error bars are much smaller than the
size of the data points.

FIG. 7. Ratio Q1 at the ordinary surface transition with #=−1 vs
L−1.1. The exponent −1.1 was obtained from the fit.

FIG. 8. Surface Binder ratio Q1 in range −1&#&1.6. The data
points (, ", !, ", #, !, and $ represent system sizes L=6, 8, 12,
20, 32, 48, and 64, respectively. The error bars of the data are
smaller than the point sizes. The lines, which simply connect data
points for each L, are just for illustration purpose.

FIG. 9. Surface Binder ratio Q1 in range 1&#&1.4. The data
points (, ", !, ", #, !, and $ represent system sizes L=6, 8, 12,
20, 32, 48, and 64, respectively. The error bars of the data are
smaller than the point sizes. The lines, which simply connect data
points for each L, are just for illustration purpose.
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Classical model: N = 3 2

FIG. 1. Plot of the RG-invariant quantity U4 defined in
Eq. (3) as a function of �s.

second-order transition line in the Heisenberg UC [6, 25].
At � = 5.17(11) the model is improved [26], i.e., leading
bulk scaling corrections are suppressed. Negligible sub-
leading bulk corrections decay fast as L�!2 , !2 ⇡ 2 [27].
For � = 5.2, the model is critical at � = 0.68798521(8)
[26]. The couplings �s,#, �s," control the surface en-
hancement of the order parameter. Here we fix Lk = L,
� = 5.2, � = 0.68798521, �s,# = �s," = �s and study
the surface critical behavior on varying �s. We com-
pute improved estimators of surface observables by av-
eraging them over the two surfaces. MC simulations are
performed by combining Metropolis, overrelaxation, and
Wol↵ single-cluster updates [28, 29].

The special transition.— For �s = � there is no surface
enhancement and at the bulk critical point the model
realizes the ordinary UC. Its critical behavior will be
studied elsewhere [30]. To investigate the surface crit-
ical behavior we proceed in two steps. We first analyze
RG-invariant quantities, with the aim of locating the on-
set of a phase transition, and determine the fixed-point
values. Then, we employ these results in a Finite-Size
Scaling (FSS) [31] analysis to compute universal criti-
cal exponents. In the vicinity of a surface transition at
�s = �s,c, and neglecting for the moment scaling correc-
tions, a RG-invariant observable R satisfies

R = f((�s � �s,c)L
ysp), (2)

where ysp is the scaling dimension of the relevant scal-
ing field associated with the transition. We consider the
surface Binder ratio U4:

U4 ⌘
h( ~M2

s )
2
i

h ~M2
s i

2
, ~Ms ⌘

X

i2surface

~�i. (3)

In Fig. 1 we show U4 as function of �s for lattice sizes
L = 16, 32, 48, 64, 96, 128. We observe a crossing indi-
cating a surface phase transition. Its existence is more
evident when data are plotted on a larger scale [29]. The
slope of U4 appears to increase rather slowly with L, such

that a rather high precision in the MC data (⇡ 10�5) is
needed in order to show the crossing. Within such a high
accuracy, scaling corrections are visible, although for in-
stance the data for L = 16 deviate by a mere . 0.1%
from the data at L = 64. For a quantitative determina-
tion of critical parameters, we expand the right-hand side
of Eq. (2) in Taylor series [32], including possible scaling
corrections, as:

R = R
⇤ +

mX

n=1

an(�s � �s,c)
n
L
nysp

+ L
�!

kX

n=0

bn(�s � �s,c)
n
L
nysp ,

(4)

where ! is the leading correction-to-scaling exponent.
We first consider fits of R = U4 neglecting scaling correc-
tions and for m = 1. Corresponding results are reported
in Table I, as a function of the minimum lattice size Lmin

taken into account. Results are overall stable, exhibit-
ing however a small detectable drift on increasing Lmin,
which is larger than the statistical accuracy of the fit.
Furthermore a good �

2
/DOF (DOF denotes the degrees

of freedom) is found only for Lmin � 48. In line with the
above observation on the slope of U4, the fitted value of
ysp is unusually small. Increasing m to 2 does not change
significantly �

2
/DOF, indicating that the approximation

m = 1 is adequate [29]. The small value of ysp can poten-
tially result in slowly-decaying analytical scaling correc-
tions / L

�ysp , originating from nonlinearities in the scal-
ing field [33]. To check their relevance, we have repeated
the fits including a quadratic correction to the relevant
scaling field (�s � �s,c) ! (�s � �s,c) + B(�s � �s,c)2.
We obtain identical results, and the fitted values of B
vanish within error bars, therefore analytical scaling cor-
rections are negligible for the range of data in exam [29].
Including scaling corrections in the analysis, fits leaving
! as a free parameter give a value compatible with 1 [29].
Indeed, scaling corrections / L

�1 are expected for non-
periodic BC [34, 35]. To obtain more accurate results,
we have repeated the fits to Eq. (4) setting ! = 1 and
k = 0. Corresponding results reported in Table I are sta-
ble, with a good �

2
/DOF. By judging conservatively the

variation of estimates we obtain the critical-point value
of U

⇤
4 = 1.0652(4). We employ this result to evaluate

critical exponents using the method of FSS at fixed phe-
nomenological coupling [36, 37]. This technique consists
in an analysis of MC data done by fixing the value of
an RG-invariant observables R (here, R = U4), thereby
trading the fluctuations of R with fluctuations of a pa-
rameter driving the transition (here, �s). This method
has been used in several high-precision MC studies of
critical phenomena [26, 38–40], and can lead to signifi-
cant gains in the error bars [37, 38]. A discussion of the
method can be found in Ref. [37]. For this analysis we
have complemented MC data shown in Fig. 1 with an
additional simulation at L = 192.

F. P. Toldin, 2020

(�~n)spec ⇡ 0.26

⌫�1
spec ⇡ 0.36



Classical model: N = 3 – extra-ordinary log phase?
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FIG. 2. Observables for �s = 1.5, in the extraordinary phase.
The ratio ⇠/L (a) and ⌥L (b) in semilogarithmic scale. (c)
The surface Binder ratio U4 as a function of 1/ lnL. Dotted
lines are a guide to the eye. (d) The surface correlations of
the order parameter for L = 348.

a violation of standard FSS. The surface Binder ratio
U4 shown in Fig. 2(c) is rather close to 1, and exhibit
a logarithmic approach to 1. Nevertheless, the surface
is not ordered: its two-point function C(x)⌘h~�0 · ~�xi

for the largest lattice size L = 384 shown in Fig. 2(d)
exhibits a slow, visible decay. Furthermore, for an or-
dered surface, ⇠/L ⇠ L and ⌥ ⇠ const, in contrast with
Figs. 2(a) and 2(b). These findings support the scenario
of a so-called “extra-ordinary-log” phase, recently put
forward in Ref. [22]. In such a phase, the two-point
function decays as C(x!1) / ln(x)�q, where q is a
universal exponent determined by some amplitudes in
the normal UC. Fits of C(L/2), C(L/4) to ln(L/l0)�q,
and of � to L

2 ln(L/l0)�q [46], provide an estimate of
q ' 2.1(2) [29]. Moreover, in the extra-ordinary-log
phase U4 � 1 / (lnL)�2, (⇠/L)2 ' (↵/2) ln(L) and
⌥L ' 2↵ ln(L), for L!1, with ↵ = 1/(⇡q) a uni-
versal RG parameter [46]. Indeed, fits of (⇠/L)2 to
(↵/2) lnL+B give ↵ ⇡ 0.14, showing however some drift
in the estimate as a function of the minimum lattice size
taken into account. Such a value is nevertheless consis-
tent with the estimate of q reported above, which cor-
responds to ↵ ' 0.15(2). Corresponding fits of L⌥ give
less stable results. Judging from the trends in the fit
results, one can conclude ↵ & 0.11, again roughly consis-
tent with previous estimates. We stress that error bars
reported above should be taken with some grain of salt,
since they stem from fits that neglect subleading correc-
tions; these are likely to be important, as illustrated, e.g.,
by other critical models with marginal perturbations [47].
A more quantitative precise assessment of the extraordi-
nary phase is outside the scope of the present work, and
is left for future research.

Discussion.— In this work we have elucidated the
boundary critical behavior of the classical 3D O(3) UC,
in the presence of a 2D surface. We have proven the

existence of a special phase transition, with unusual ex-
ponents, and of an extraordinary phase with slowly-
decaying correlations, supporting the “extra-ordinary-
log” scenario of Ref. [22]. These findings provide a ex-
planation to recent MC results on the boundary critical
behavior of quantum spin models [13–16, 18–20]. The
exponent ⌘k reported for such models is close to that
of the special transition, Eq. (9), thus suggesting that
those quantum spin models are “accidentally” close to
the special transition. The observed ⌘k is also close to
a simple evaluation of the two-loops "�expansion series
[3, 48–50] by setting " = 1 and N = 3 [15]. However,
the "�expansion result for ysp di↵ers significantly from
Eq. (6) [29]. Generally, the realization of the special
UC requires a fine-tuning of boundary couplings, be-
cause the corresponding fixed point is unstable. Never-
theless, the unusually small value of ysp (Eq. (6)) implies
a slow crossover from the special fixed point when the
model is tuned away from the special transition. In other
words, a small ysp results in a (relatively) large region,
(�s � �s,c)Lysp = O(1), where FSS is controlled by the
special fixed point and the observed exponents are close
to those of the special UC, without the need of a fine-
tuning. This plausibly explains at least the results for
S = 1 quantum models of Ref. [18, 20], where a topologi-
cal ✓�term is absent. Also, we observe that the exponent
⌘k reported in Refs. [18, 20] deviates for about 15% from
⌘k at the special point (Eq. (9)), suggesting that the mod-
els are not exactly at the special transition. Concerning
the S = 1/2 case, we notice that the small value of ysp
implies that the special fixed point is located at a small,
possibly perturbatively accessible, value of the coupling
constant g

⇤ of the field theory studied in Ref. [22]. Ac-
cordingly, if the special transition occurs in the presence
of VBS order, ⌘k is expected to be identical to the S = 1
case, whereas for a direct magnetic-VBS transition, as
advocated in Ref. [17], nonperturbative corrections to ⌘k
due to the topological ✓�term are expected to be small
[22]. This would explain the similarity of the ⌘k expo-
nent in dimerized S = 1/2 models [14–16] with that of
the special transition (Eq. (9)). Finally, to close the loop,
it would highly desirable to investigate the boundary crit-
ical behavior of quantum spin models with a tunable sur-
face coupling, such as those considered in Refs. [16, 18],
so as to detect a surface phase transition and compare
with the present findings.
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Figure 2. Results for the extraordinary-log transitions at  = 1, 1.5, 3, and 5. (a) Log-log plot of the two-point correlation g(L/2) and the
scaled susceptibility �0L

�2 versus ln(L/l0). The parameter l0 is -dependent and obtained from least-squares fits. Dashed lines have the
slope �0.59 and denote the critical exponent ⌘̂ = 0.59(2). (b) Log-log plot of the scaled magnetic fluctuations �1L

�2 versus ln(L/l0).
Dashed lines have the slope �1.59 and denote the exponent ⌘̂0 ⇡ 1.59. (c) Scaled helicity modulus ⌥L versus L. The horizontal axis is in a
log scale. Dashed lines have the slope 0.54 and relate to the universal RG parameter ↵ = 0.27(2) by 2↵.

Hence, if the RG prediction is correct, the logarithmic uni-
versality would emerge, regardless of the exact value of Nc.
We consider the XY model on simple-cubic lattices with the
Hamiltonian [3, 6]

H/(kBT ) = �
X

hrr0i

Krr0
~Sr · ~Sr0 , (2)

where ~Sr represents the XY spin on site r and Krr0 > 0
denotes the nearest-neighbor ferromagnetic coupling. We im-
pose open boundary conditions in one direction and periodic
boundary conditions in other directions, hence a pair of open
surfaces are specified. We set Krr0 = K 0 if r and r0 are on the
same surface and Krr0 = K otherwise. The surface coupling
enhancement  is defined by  ⌘ (K 0 �K)/K.

Figure 1 shows the phase diagram of model (2), which con-
tains a long-range-ordered surface phase in presence of or-
dered bulk, as well as a disordered surface phase and a critical
quasi-long-range-ordered surface phase in presence of disor-
dered bulk. The critical lines meet together at the special tran-
sition point. A characteristic feature for N = 2 is the exis-
tence of the quasi-long-range-ordered phase, which is absent
in N = 1 and N � 3 situations.

Consider the quasi-long-range-ordered regime. As K !
K�

c , several scenarios of SCB are possible, owing to divergent
bulk correlations. One scenario is that the surface long-range
order develops at Kc as a result of the effective interactions
mediated by long-range bulk correlations. This scenario can
not be precluded by the Mermin-Wagner theorem as the ef-
fective interactions could be long-ranged. A previous study
revealed [6] that the Monte Carlo data restricting to L  95
(L is linear size) are not sufficient to preclude either discontin-
uous or continuous surface transition across the extraordinary
critical line; the former implies long-range surface order at
Kc.

Summary of main findings. By extensive Monte Carlo simu-

lations, we confirm the emergence of logarithmic universality
in model (2). As shown in Fig. 2(a), the L dependence of sur-
face two-point correlation g(L/2) obeys the scaling formula
g(L/2) ⇣ [ln(L/l0)]�⌘̂ with ⌘̂ = 0.59(2).

We analyze the surface magnetic fluctuations �(k) =

L2h||**m (k)||2i with **
m (k) = (1/L2)

P
r
~Sreik·r, where the

summation runs over sites on surface and k denotes a Fourier
mode. As shown in Figs. 2(a) and (b), the magnetic fluctu-
ations �0 = �(0, 0) (susceptibility) and �1 = �(2⇡/L, 0)
have the distinct finite-size scaling (FSS) behavior �0 ⇣
L2[ln(L/l0)]�⌘̂ and �1 ⇣ L2[ln(L/l0)]�⌘̂0

, with ⌘̂0 ⇡ ⌘̂ + 1.
Motivated by these observations as well as the two-distance
scenarios in high-dimensional O(N ) critical systems [19–23]
and quantum deconfined criticality [24], we conjecture that
the FSS of critical two-point correlation behaves as

g(r) ⇣
(
[ln(r/r0)]�⌘̂0

, lnr  O[(lnL)⌘̂/⌘̂
0
],

[ln(L/l0)]�⌘̂, lnr � O[(lnL)⌘̂/⌘̂
0
],

(3)

where r0 and l0 are non-universal constants. By (3), we
point out two coexisting features: the r-dependent behav-
ior [ln(r/r0)]�⌘̂0

and the large-distance r-independent plateau
[ln(L/l0)]�⌘̂ . Equation (3) is a possible explanation for
the numerical observations and compatible with the FSS of
second-moment correlation length at the extraordinary transi-
tion of O(3) model [10, 25]. Recently, a two-distance scenario
was proposed for the two-point correlation of O(n) model at a
marginal situation (the upper critical dimensionality) [22] and
confirmed conclusively by large-scale numerical simulations
on hyper-cubic lattices up to 7684 sites [23]. Notice that the
open surfaces of model (2) are at the lower critical dimension-
ality (ds = 2) and also belong to marginal situations.

We confirm the scaling relation between ⌘̂ and the RG pa-
rameter of helicity modulus. The helicity modulus ⌥ mea-
sures the response of a system to a twist in boundary con-
ditions [26]. The definition is given in the Supplementary

↵ ⇡ 0.27q =
N � 1

2⇡↵
, M. Hu, Y. Deng and J.-P. Lv, 2020
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Non-ordinary criticality at the edges of planar spin-1 Heisenberg antiferromagnets
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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Non-ordinary criticality at the edges of planar spin-1 Heisenberg antiferromagnets
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Dangling edge spins of dimerized two-dimensional spin-1 Heisenberg antiferromagnets are shown
to exhibit non-ordinary quantum critical correlations, akin to the scaling behavior observed in
recently explored spin-1/2 systems. Based on large-scale quantum Monte Carlo simulations, we
observe remarkable similarities between these two cases, and also examine the crossover to the
fundamentally distinct behavior in the one-dimensional limit of strongly coupled edge spins. We
complement our numerical analysis by a cluster mean-field theory that encompasses the qualitatively
similar behavior for the spin-1 and the spin-1/2 case, and its dependence on the spatial edge spin
configuration in a generic way.

I. INTRODUCTION

Many aspects of quantum critical magnets can be de-
scribed in terms of an e↵ective classical field theory.
This applies in particular to quantum critical points of
unfrustrated quantum antiferromagnets, for which the
quantum-to-classical mapping provides a description of
the quantum critical properties of a d-dimensional quan-
tum system in terms of a d + 1-dimensional classical �4

field theory1. For an SU(2)-symmetric system, the ef-
fective field theory contains a 3-component � field with
an O(3)-symmetric action, which also describes, e.g., the
thermal criticality of classical Heisenberg ferromagnets.

An interesting twist to this relationship is provided
by considering surface critical phenomena in quantum
magnets. While the field of classical surface criticality
is rather mature, and a systematic theory based on the
renormalization group has been developed early on (see,
e.g., Ref. 2 for an extended review), recent work3–5 un-
covered surprises when it comes to applying these re-
sults to a corresponding low-dimensional quantum mag-
netic system: Most striking in this respect is the obser-
vation that several two-dimensional unfrustrated quan-
tum critical magnets may exhibit values of the algebraic
scaling exponents at appropriately prepared edges that
are not observed at surfaces of the corresponding three-
dimensional classical Heisenberg model. In particular,
for the O(3)-symmetric case, the Mermin-Wagner theo-
rem forbids the presence of a finite-temperature surface
transition above the bulk critical temperature6. In ef-
fect, the classical surface exhibits algebraic correlations
only at the bulk’s critical temperature, defining the bulk-
induced, ordinary surface universality class.

It was indeed observed recently in various unbiased
numerical studies that two-dimensional SU(2)-invariant
Heisenberg antiferromagnets exhibit algebraic correla-
tions at the edges of a quantum critical bulk that are in
accord with the scaling exponents of the ordinary surface
universality class3–5. However, this is not the only possi-
bility: In fact, it was found that such systems exhibit a
remarkably distinct, non-ordinary power-law scaling be-
havior for appropriately constructed edge spin configura-

FIG. 1. Columnar dimer lattice with non-dangling edge
spins (N, top edge) and dangling edge spins (D, bottom edge).
Solid (open) circles show bulk (edge) spins, and thick red (thin
black) lines denote intra- (inter-) dimer couplings, JD (J).

tions, characterized by so-called dangling edge spins3–5.
A simple model that allows us to illustrate this sce-

nario is shown in Fig. 1: Here, we consider spin-S degrees
of freedom located on the sites of a square lattice, with
SU(2)-invariant Heisenberg exchange interactions along
the nearest-neighbor bonds. The exchange constants are
arranged such as to form a columnar system of coupled
spin dimers. Denoting the (stronger) intra-dimer cou-
pling as JD, and the inter-dimer coupling J , this system
for S = 1/2 is well known to exhibit a quantum crit-
ical point at a values of J/JD = 0.52337(3)7,8, which
separates a phase with antiferromagnetic order from the
quantum disordered regime of strong dimer coupling JD.
In addition, Fig. 1 illustrates two di↵erent kinds of edges:
the edge spins at the top edge are each connected to an-
other spin by a strong dimer coupling JD, while for the
configuration shown at the bottom, the edge spins are in
that respect missing their strong-coupling partner. We
denote these two possibilities as non-dangling (N) and
dangling (D) edge spins, respectively.
As detailed in Refs. 3–5 for the spin-1/2 case, the edge

spins exhibit algebraic power-law correlations for both
kinds of edges if the ratio J/JD is tuned to the bulk
critical value. However, the dangling edge spin configu-
ration exhibits non-ordinary values of the corresponding
critical exponents, in contrast to the non-dangling case,
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RG details
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From ordinary to normal
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Restoring O(N) symmetry
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