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Generative Modeling



This X Does Not Exist!

StatSeminar@MIEM

2024
D.. Derkach  Generative Modeling 3

https://thisxdoesnotexist.com/

https://thisxdoesnotexist.com/


Generative model: Model Zoo
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Generative model: Problem Statement
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▶ Estimation: find the 𝑓 in ℱ

that best matches observed 

data. 

▶ Evaluate Likelihood: 

compute 𝑓(𝑧) for a given 𝑧.

▶ Sampling: drawing from 𝑓.

Three major tasks, given a 

generative model 𝑓 from a class 

of models ℱ :

S. Nowozin et al. f-GAN: Training Generative Neural Samplers using 

Variational Divergence Minimization
Z. Xiao et al., Tackling the Generative Learning Trilemma with Denoising 

Diffusion GANs

https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/2112.07804
https://arxiv.org/abs/2112.07804


Generative Models Tricks for Brains
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▶ Enormous progress in recent years.

▶ Mostly tricks for brains.

▶ Technology is ready for new tasks.
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https://www.fastcompany.com/90303908/this-ai-dreams-about-cats-and-

theyll-haunt-your-nightmares

https://www.fastcompany.com/90303908/this-ai-dreams-about-cats-and-theyll-haunt-your-nightmares
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Astronomy Example
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▶ Generate weak lensing 

convergence maps.

▶ ”Visually, an expert cannot 

distinguish the generated 

maps from the full simulation 

ones”

Mustafa, M., et al.. Comput. Astrophys. 6, 1 (2019).
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Generative models: take home message
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▶ No single best 

generative model.

▶ Choices have 

consequences.

▶ The choice is problem 

motivated: cannot get 

all three at once. 

D.. Derkach Generative Modeling
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›

Fast Sampling



Fast Sampling Statement
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▶ Need a fast and flexible 

approach to generate 

as many realistic 

samples as possible.

▶ Trained on real data.

▶ With a possibility to 

correct the model with 

new data. 

D.. Derkach Generative Modeling
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Large Hadron Collider
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▶ Need “cameras” (or 

detectors) to see what 

happened. 

▶ Millions of events (up to 4Tb/s 

data stream).

▶ Need to simulate known 

events.

D.. Derkach Generative Modeling
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High-Energy Physics
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▶ Event can be 

considered as a 

photo. 

▶ The event is 

than passed 

through the 

pipeline.
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Simulation
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Several model-motivated 

transitions.

Sequence:

• collision;

• decay;

• matter interaction;

• digitisation;

• reconstruction.

Each event takes 1 minute to 

generate (real world data is 

“generated” at several MHz).

Simulate “simulation” using effective 

parameterization.

14D.. Derkach Generative Modeling
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The calorimeter consists of many 

cells that reads out the energy 
deposit of a single particle.

A single particle deposits energy to 

several cells. An event is a sum of all 

particles and some noise. 

We are normally using some 
reconstructed parameters of the 

event.

LHCb Calorimeter Technical Design Report

What is the event.

15D.. Derkach Generative Modeling
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http://inspirehep.net/record/540892?ln=en


Since we know all processes in 

the subdetector, we can fully 
simulate an event using precise 

physics-motivated rules. 

For calorimeters this means 

taking into account the structure 
of response that consists of 

many secondary particles. 

This is done using Geant toolkit. 

Pro: physics behind the 
simulation is controlled 

Cons: slow, needs fine tuning.

Ideas for Simulation

16D.. Derkach Generative Modeling
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Build a library of calorimeter responses to impact 

particle in corresponding 5D phase space using 
detailed simulation («frozen showers»).

5D = 3D momentum + 2D coordinate for every 

particle type.

The whole phase space is split into bins, the exact 

observable is obtained interpolating between the 
bins.

One can also construct full interpolation (without 
using bins).

Pros: easy to interpret, quality is controlled by 

the number of samples. 

Cons: curse of dimensionality, memory 

consumption, full interpolation takes huge 
efforts. 

Ideas for Tabular Methods

17
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Upcoming Needs
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Generative modeling for HEP

• Conditional

dependence on 

incident particle 

information.

Need to be

• Tunable.

• Robust.

• Fast for sampling.

V. Chekalina et al. EPJ Web Conf. 214 (2019) 02034

19D.. Derkach Generative Modeling
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https://arxiv.org/abs/1812.01319


Generative Models
Direct simulation of calorimeter 

responses

V. Chekalina et al.  EPJ WoC: 214, 02034 (2019) A. Maevskiy et al., ML4PHYS@Neurips 2019

Simulation of reconstruction output 

for RICH and Muon

20

▶ Reduction of dimensionality of input/outp space can lead to better results. 
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https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_40.pdf


Generative Models for Fast Simulation  

▶ Many neural based generative description attempted in recent years

Chapman et al., EPJ Web of Conferences 245, 02035 
(2020) A. Maevskiy et al. Eur.Phys.J.C 81 (2021) 7, 599

ATLAS: VAE and GAN for Calorimeter MPD: GAN for TPC
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https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_02035/epjconf_chep2020_02035.html
https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_02035/epjconf_chep2020_02035.html
https://arxiv.org/abs/2012.04595


Why it works/should it work?

▶ Treatment of physics data as pictures. 

– Allows for the use of advanced ML 

approaches.

▶ Expressivity of NN solutions. 

– Gives parameterization of sophisticated data.

▶ Manual decomposition of data.

– “Expert” approach to model building.

22D.. Derkach Generative Modeling
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Challenges: Training Samples

• Use real data sample, but we need to reduce noise from it.

• Model information introduced in the training procedure using maximum 

likelihood fit. A. Maevskiy et al., Neurips 2019 Workshop

23D.. Derkach Generative Modeling
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Generative Models Characteristics
▶ Fast Sampling:

– much faster than detailed MC;

– models can get complicated;

– current simulation speed ~70 ms.

▶ Very Fast training:

– retrain can be done very fast;

– train process still should be periodically controlled;

– current model trains ~1-2 days using GPU. 

▶ Good Precision:

– complicated models can be quite precise;

– precision is controlled by train sample statistics;

– need to understand influence on the final systematics.

Sample

TrainPrecision

24D.. Derkach Generative Modeling
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Simulation Picture

Sample

TrainPrecision

Sample

TrainPrecision

Sample

TrainPrecision

Detailed simulation Parametric simulation Machine learning simulation

Each approach has vices and virtues.

A possibility to have easily retrainable model can give several benefits in case of using machine learning. 

(*) are my opinion

25D.. Derkach Generative Modeling
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Challenges: Implementations

More challenges: 

• Distilling the generators. 

Aim: beyond 100ms/event.

• Testing the generator quality in the 

limit of small data samples.

Aim: on-the-fly algorithms.

• Implementing pipeline in the online 

environment (200xNVidia RTX A5000 

from LHCb).

Aim: Efficient architecture and 

Scheduling given resources.

Sukhorosov BSc Diploma

Sukhorosov BSc Diploma

26D.. Derkach Generative Modeling
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Fast Sampling: take home message

27

▶ Machine learning provide a flexible solution but not the fastest.

▶ Save human time in providing good simulation. 

▶ Good addition to the “classical” approaches.

▶ Can be retrained online with new samples.

D.. Derkach Generative Modeling
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›

Surrogates



Closer Look
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Data Collection Reconstruction Hypothesis check
StatSeminar@MIEM
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Difficulties

• G(𝑥; 𝑝, 𝜃) physics 

simulator 

~1event/minute

• ν chosen manually

• 𝐿 not differentiable

𝐿 ~ 𝑒𝑥𝑝(₽fix− ₽)2< (𝑝 − ҧ𝑝)2>

Automate

ν
(algorithm)

ҧ𝑝(𝑦; 𝐺, ν)
𝑝

(physics)
G(𝑥; 𝑝, 𝜃)

stochastics

𝜃
(detector)

SIMULATION Data Reconstruction
StatSeminar@MIEM
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Black box optimization

𝐿 ~ 𝑒𝑥𝑝(₽fix− ₽)2< (𝑝 − ҧ𝑝)2>

▶ The value at any point is known.

▶ The analytical formula is unknown.

▶ The time to compute the value is several tens of hours.

▶ Classical black-box optimization problem:

– Optimizing someone else's code (there is only a compiled library).

– Systems described by differential equations (airplane wing shape).

StatSeminar@MIEM
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Black Box Solution

▶ Expert Method

– Might be wrong

▶ Random search.

– Works sometimes.

▶ Surrogate modeling

StatSeminar@MIEM
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“Classic” Surrogate
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▶ Use neural network to 

connect parameters and 

outcomes. 

▶ Predict mean behavior.

▶ Does not take into account 

variation of distributions 

depending on the input 

parameters.

Y. Plyashkov et al. On Scaling of Hall-Effect Thrusters Using Neural Nets 

Journal of Propulsion and Power 2022 38:6, 935-944
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https://arc.aiaa.org/doi/10.2514/1.B38592
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SHiP Experiment Design
Active Magnetic Shield 

◊  Absorber shape optimization: background suppression at 

reasonable cost 
StatSeminar@MIEM
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Final Optimization

A. Filatov et al. Journal of Physics: Conference Series. 

2017. Vol. 934. P. 1-5

Surrogate modeling using 

Bayesian Optimization of 

Gaussian Processes.

Optimization brought 

25% cheaper solution. 

Currently being tested 

with engineers. 
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More Opportunities
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Since we have information 

about distribution in each 

particular parameter value.

We can use it to estimate the 

most interesting point for the 

next step of optimization. 

This is very useful for non diff 

black box optimization.

T. Ramazyan et al. ECAI-2024

https://arxiv.org/abs/2407.11917
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Surrogates' conclusions

▶ Optimization of large setups requires simultaneous approximate solution of 

forward and inverse problems. 

– Many challenges in both parts: speed-up, implementation, tail control of generative models.

▶ Final stage of the optimization brings the need of precise surrogate modeling. 

▶ A complete optimization cycle brings in significant reduction in costs (and thus 

efficiencies) but requires several fundamental questions to be solved.
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Overall conclusions

▶ Generative modeling usage, while being effective in some applications, remains a 

challenge real-world applications.

▶ The main challenges are: 

– speed

– implementation

– uncertainty

– data hunger

In next several years, one can expect significant number of results in the applied 

generative modeling field.
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