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This Person Does Not Exist

The site that started it all, with the name
that says it all. Created using a style-
based generative adversarial network
(StyleGAN), this website had the tech
community buzzing with excitement and
intrigue and inspired many more sites.

Created by Phillip Wang.
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This X Does Not Exist!

This Cat Does Not Exist

These purr-fect GAN-made cats will
freshen your feeline-gs and make you
wish you could reach through your screen
and cuddle them. Once in a while the cats
have visual deformities due to
imperfections in the model - beware, they
can cause nightmares.

Created by Ryan Hoover.
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This Rental Does Not Exist

Why bother trying to look for the perfect
home when you can create one instead?
Just find a listing you like, buy some land,
build it, and then enjoy the rest of your
life.

Created by Christopher Schmidt.

https.//thisxdoesnotexist.com/



https://thisxdoesnotexist.com/

Generative model: Model Zoo

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative model: Problem Statement

Three major tasks, given a
generative model f from a class

High
Quality

Generative '\ Denoising

of models 7 Adveranal T\ samples )\ Dt
» Estimation: find the f in F SN -
that best matches observed 7 |
: Fast
data. \ Sampling
\)
» Evaluate Likelihood: —
. Variational Autoencoders,
CompUte f(Z) for d glven Z. Normalizing Flows

» Sampling: drawing from f.

S. Nowozin et al. f-GAN: Training Generative Neural Samplers using
Variational Divergence Minimization
Z. Xiao etal.,
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https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/2112.07804
https://arxiv.org/abs/2112.07804

Generative Models Tricks for Brains

» Enormous progress in recent years.
> Mostly tricks for brains.

» Technology is ready for new tasks.

StatSeminar@ MIEM
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Generative Models Tricks for Brains
AST(OMPANY

02-08-19

This Al dreams about cats-and
thev’ll haunt vour nightmares

Nvidia's new Al is capable of generating everything from human faces to kittens. But the
development process left behind plenty of. . .errors.

ion JYGWI NO

» Enormous progress in recent years

> Mostly tricks for brains.

» Technology is ready for new tasks. | WWﬂﬂSﬂnuS_!L
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https://www.fastcompany.com/90303908/this-ai-dreams-about-cats-and-theyll-haunt-your-nightmares
https://www.fastcompany.com/90303908/this-ai-dreams-about-cats-and-theyll-haunt-your-nightmares

Astronomy Example

> Generate weak lensing

10!

convergence maps.

Validation

10?2

> “Visually, an expert cannot

distinguish the generated

L0~

Generated

maps from the full simulation
ones”

—L10 1

0.6 0.8 0.0 0.2 0.4 0.6

Mustafa, M., et al.. Comput. Astrophys. 6, 1 (2019).
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Generative models: take home message

» No single best
generative model.

» Choices have
conseqguences.

» The choice is problem
motivated: cannot get
all three at once.
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Sampling
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Variational Autoencoders.
Normalizing Flows

StatSeminar@ MIEM
2024



Fast Sampling



Fast Sampling Statement

High

_ . /i \ -
Generative -/ Quality i\ Denoising
Adversarial S \ Samples /, "\ Diffusion
Networks . \ "/ *\ Models

Fast
Sampling

LICIESS T -l i -

Variational Autoencoders,
Normalizing Flows
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Need a fast and flexible
approach to generate
as many realistic
samples as possible.

Trained on real data.

With a possibility to
correct the model with
new data.
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Large Hadron Collider

» Need “cameras” (or
detectors) to see what
happened.

» Millions of events (up to 4Tb/s
data stream).

» Need to simulate known
events.

StatSeminar@ MIEM™ =
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High-Energy Physics

» Event can be
considered as a
photo.

> The event is
than passed
through the
pipeline.
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Collision Event at
7 TeV

S;J ATLAS

1A EXPERIMENT

2010-03-30, 12:58 CEST
Run 152166, Event 316199

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html
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Simulation

Several model-motivated
transitions.

Sequence:

e collision;

+ decay;

* matter interaction;
digitisation;
reconstruction.

Each event takes 1 minute to
generate (real world data is
‘generated” at several MHz).
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Independent phases that can be split
for needs and convenience

Geometry Particle
Simulation

Response
Simulation

Individual
Analyses

Simulate “simulation” using effective
parameterization.

StatSeminar@ MIEM
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What is the event.

The calorimeter consists of many
cells that reads out the energy
deposit of a single particle.

A single particle deposits energy to
several cells. An event is a sum of all
particles and some noise.

We are normally using some

reconstructed parameters of the
event.
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l<z

N

Paganini, M. et al. "CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative
adversarial networks." Physical Review D 97.1 (2018): 014021.
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http://inspirehep.net/record/540892?ln=en

ldeas for Simulation

15mm W-aloy 12.16 GeV e- input

. ] imm Cu "'&‘E‘?::A:::le:“ 66.5mm gap {air or LN2) GEANT4 simulation
Since we know all processes in SRk e p o

the subdetector, we can fully T e i
simulate an event using precise ’ T — —f

physics-motivated rules.

For calorimeters this means
taking into account the structure
of response that consists of
many secondary particles.

This is done using Geant toolkit.
Pro: physics behind the

simulation is controlled
Cons: slow, needs fine tuning.

n (eg. pholons, delta-rays. eic.)

FIG. 2: Layout diagram, and GEANT4 simulation of a single 12.16 GeV electron event in our ACE detector system; in this
case liquid nitrogen occupies the interelement spaces.
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|deas for Tabular Methods
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E E/E,,, for y with E €[236,256] MeV and 6 €[0.21,0.24] rad in ECal
[]

— Full simulation

e

H LHCb preliminary

mean: 0.09
AMS: 0.04
mean: 0.09
RMS: 0.05

Generative Modeling
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Build a library of calorimeter responses to impact
particle in corresponding 5D phase space using
detailed simulation («frozen showers»).

5D = 3D momentum + 2D coordinate for every
particle type.

The whole phase space is split into bins, the exact
observable is obtained interpolating between the
bins.

One can also construct full interpolation (without
using bins).

Pros: easy to interpret, quality is controlled by
the number of samples.

Cons: curse of dimensionality, memory
consumption, full interpolation takes huge
efforts.

17



Upcoming Needs

- r - - - 1 - T - 1 T T T T 1 T T T T
_ I Stripping LHCb Preliminary

- 0 User

| I MC:100% Detailed Simulation

— — Pledge

1 WLCG

HLT

Opportunistic

Baseline

6000 [ == Aggressive Fast Simulation Model

CPU [KHS06]
>
S S
S S

8000 -

4000 |

2000 . B
0501 2022 2023 2024 a0
Year

Projected LHCb computing needs breakdown by category
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Generative modeling for HEP

25 0 . - 2.0 0

 Conditional : B ?
dependence on w i Fe
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https://arxiv.org/abs/1812.01319

Generative Models

Direct simulation of calorimeter Simulation of reconstruction output

for RICH and Muon

responses
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V. Chekalina et al. EPJ WoC: 214, 02034 (2019)

A. Maevskiy et al., ML4APHYS@Neurips 2019

» Reduction of dimensionality of input/outp space can lead to better results.
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D.. Derkach Generative Modeling 2024


V.%20Chekalina%20et%20al.%20EPJ%20Web%20of%20Conferences%20214,%2002034%20(2019)
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_40.pdf

Generative Models for Fast Simulation

» Many neural based generative description attempted in recent years

| ATLAS: VAE and GAN for Calorimeter | | MPD: GAN for TPC |

1.10 rA7245 Simulation Preiminary ¢ Geantd E ATLAS Simulation Preliminary + Geant4 15
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Chapman et al., EP] Web of Conferences 245, 02035 ,
(2020) A. Maevskiy et al. Eur.Phys.J.C 81 (2021) 7, 599
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https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_02035/epjconf_chep2020_02035.html
https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_02035/epjconf_chep2020_02035.html
https://arxiv.org/abs/2012.04595

Why it works/should it work?

» Treatment of physics data as pictures.

— Allows for the use of advanced ML
approaches.

> Expressivity of NN solutions.

— Gives parameterization of sophisticated data.

» Manual decomposition of data.

— "Expert” approach to model building.
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Challenges: Training Samples

0.25 1 —— signal 0.6 -
—— background

0.20 7 —— mixed data 0.5

0.4 1
0.15 4

0.3 1
0.10 -

0.2 1
0.05 1 0.1 -
0.00 4— _'. 0.0 -

0 2 3] a8 10 -6

—— real signal distribution
observed dataset
m reconstructed with sWeights

 Use real data sample, but we need to reduce noise from it.

« Model information introduced in the training procedure using maximum

likelihood fit.
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A. Maevskiy et al., Neurips 2019 Workshop
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https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_40.pdf

Generative Models Characteristics

> Fast Sampling:
— much faster than detailed MC;
— models can get complicated,;
— current simulation speed ~70 ms.
> Very Fast training:
— retrain can be done very fast;
— train process still should be periodically controlled;
— current model trains ~1-2 days using GPU.
» Good Precision:
— complicated models can be quite precise;

— precision is controlled by train sample statistics;

— need to understand influence on the final systematics.

StatSeminar@ MIEM
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Sample

//

Precision

Train
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Simulation Picture

Detailed simulation Parametric simulation Machine learning simulation

Sample Sample Sample

- ' isi Train - '
Precision Train Precision Precision Train

Each approach has vices and virtues.
A possibility to have easily retrainable model can give several benefits in case of using machine learning.
(*) are my opinion

StatSeminar@ MIEM
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Challenges: Implementations

Expected pipeline (preliminary)

More challenges:
+ Distilling the generators.
Aim: beyond 100ms/event.

« Testing the generator quality in the
limit of small data samples.
Aim: on-the-fly algorithms.

« Implementing pipeline in the online
environment (200xNVidia RTX A5000
from LHCb).

Aim: Efficient architecture and

Scheduling given resources.

Sukhorosov BSc Diploma

StatSeminar@ MIEM
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https://www.hse.ru/ba/ami/students/diplomas/page14.html/624890293

Fast Sampling: take home message

» Machine learning provide a flexible solution but not the fastest.
» Save human time in providing good simulation.
» Good addition to the “classical” approaches.

» Can be retrained online with new samples.

D.. Derkach Generative Modeling StatSemzlggzr@l\/llEM
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Surrogates



Closer Look
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Difficulties

l L~ exp(Pp —P)?< (p —P)*> |

Lo G(x; p, )
(physics) - stochastics

6 \Y
(detector) (algorithm)
SIMULATION Data R@%&%H%&HE@O”

D.. Derkach Generative Modeling 2024

* G(x;p,0) physics
simulator
~Tevent/minute

* v chosen manually

e L not differentiable
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Black box optimization
L ~ exp(Br— B)2< (p — p)?>

» The value at any point is known.
» The analytical formula is unknown.
» The time to compute the value is several tens of hours.

> Classical black-box optimization problem:

— Optimizing someone else's code (there is only a compiled library).

— Systems described by differential equations (airplane wing shape).

StatSeminar@ MIEM
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Black Box Solution

> Expert Method Automate
— Might be wrong 1 L~exp@e—)'< (@ —P)'> .
+—GLep-6)physics
p S . ;
» Random search. bhysicy —  SEPO GGy ~levent/minute

+ v chosen-manually

* L not differentiable

— Works sometimes.

» Surrogate modeling S(,6)
. o I
2o Optlmlzggggté# rrogate
SIMULATION Data Reconstruction

StatSeminar@ MIEM
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“Classic” Surrogate

» Use neural network to

connect parameters and
outcomes.

» Predict mean behavior.

» Does not take into account
variation of distributions

depending on the input

a ra m ete rS Fig. 14 Predictions from the FNN ensemble of the anode efficiency 77, and anode specific impulse s, as
. functions of the discharge channel geometric parameters for the indicated discharge voltages and powers.
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https://arc.aiaa.org/doi/10.2514/1.B38592
https://arc.aiaa.org/doi/10.2514/1.B38592
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reasonable cost
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Final Optimization

Surrogate modeling using
Bayesian Optimization of
Gaussian Processes.

Optimization brought
25% cheaper solution.

Currently being tested
with engineers.
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https://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050
https://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050

M O re O p p O rt u n it i e S Algorithm 1 Wasserstein Uncertainty Global Optimisation (WU-GO)

Input: Ground truths M, generator G, grid ©, parameter &
Output: Optimal configuration 6*

while stopping criteria are not met do

) ) ) Fit G on M
Since we have information

o Approximate f: f(6) = E[G(0)] ~ L 37, zj,2; ~ G(6)
about distribution in each Estimate ow: 6w (0) = min,ca p(,u G®))
particular parameter value. Predict § = argmin,_g{f(0) — & - 6w(0)}}
Call simulator for § : fi
M = MU {i}
end while

We can use it to estimate the
most interesting point for the
next step of optimization.

&H S| T . This is very useful for non diff
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 blaCk bOX Optimization.

T. Ramazyan et al. ECAI-2024

StatSeminar@ MIEM
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https://arxiv.org/abs/2407.11917

Surrogates' conclusions

» Optimization of large setups requires simultaneous approximate solution of
forward and inverse problems.

— Many challenges in both parts: speed-up, implementation, tail control of generative models.

» Final stage of the optimization brings the need of precise surrogate modeling.

» A complete optimization cycle brings in significant reduction in costs (and thus
efficiencies) but requires several fundamental questions to be solved.

StatSeminar@ MIEM
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Overall conclusions

» Generative modeling usage, while being effective in some applications, remains a
challenge real-world applications.

» The main challenges are:
— speed
— Implementation
— uncertainty

— data hunger

In next several years, one can expect significant number of results in the applied
generative modeling field.

StatSeminar@ MIEM
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